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Images of thermodynamic fundamental and state functions for pure, binary, and ternary systems have been
created using high-performance computer graphics. Results were obtained from integrations of the
Peng-Robinson equation, using standard heat-capacity data and common mixing rules. The Legendre-transform
basis of the various thermodynamic coordinate systems is demonstrated, and the agreement between those
geometries and the relevant criteria for thermodynamic stability is noted. The capacity of the images to convey
the nature and utility of complex thermodynamic quantities is used as an argument for greater emphasis on
visualization.

Pictures Versus Numbers

Computer visualization can bridge a gap that has existed
throughout the history of human enlightenment—that which
separates left thinkers and right thinkers. It can enrich the rigid,
sequential world of the former while adding quantity and
structure to the intuitive meanderings of the latter. It can provide
subjective models of very precise ideas while offering analytical
interpretations of the purest art.

Educators have long needed visual tools, but they may not
welcome modern graphics. As with many high-tech advances,
it is urged upon us with such overkill that the wary scholar
may be turned away. Confronted by slick videos and animated
advertisements selling everything from absinthe to zirconia, the
careful teacher may hesitate, wondering understandably if
visualized instruction is not just a fancy toy in search of
legitimacy.

But famous minds have spoken otherwise. Aristotle said ”the
soul never thinks without an image”.1 Albert Einstein often did
poorly as a conventional student but ultimately became a
daydreamer who played with images in his mind—images that
were to transform our view of the physical world. The young
Winston Churchill lagged similarly behind his schoolmates but
later became a master orator with a preference for visual-spatial
modes of thought. It took George Patton five years to graduate
from West Point—he was clumsy, accident-prone, and so inept
at spelling and punctuation that his wife had to correct his
writings. But he had a special feeling for timing and spatial
relationships that are credited for his legendary skill as a
commanding general.2

With one-quarter of the human cerebral cortex committed to
vision, it would seem that any method sending more data
through the visual port would be an important advance. Many
of us have had moments when words and numbers failed, and
only a picture—perhaps the merest sketch or the most casual

graphic—could fill the void to make the point we were trying
to express. Cornell’s Donald Greenberg said it well while side-
stepping the cliché: “A picture is worth 1024 words”.3

Yet, visualization is not emphasized in modern education.4

Some see it as an invasion of the traditional ways.5 Educators
can be conservative and reluctant to change time-tested methods.
Schemes that have worked well in the past extrapolate effort-
lessly into the future and pose stubborn obstacles to change.

Our cumulative years of engineering experience have shown
us the product of society’s left-biased education: bright, hard-
working minds focused on a rigid, numerical interpretation of
nature—students for whom an equation conveys little more than
symbols and numbers to be solved for yet more symbols and
more numbers. The global aspects of functional dependence,
spatial relationship, and overall cause and effect have all too
frequently played a minor role.

And that mindset perpetuates itself. Students from this
tradition become professors of like mind. Pedagogies become
sacred cows guarded by suspicion and indifference. When such
attitudes are mixed with the pressures placed upon today’s
academic, the result can be a fixed educational paradigm,
resistant to change.

But science and engineering have important visual compo-
nents. Who would teach calculus without showing slopes and
areas? Who would teach transport phenomena without picturing
flow fields and temperature gradients? Who would talk about
sine waves without sketching those familiar, undulating curves?
The notions of cause and effect that we pursue in science are
universal and separate from the numerical measures we ascribe
to them. It is our great loss when the mechanics of obtaining
those measures obscure the reasons for doing so.

Righting What’s Left

Few disciplines are as consistently left-interpreted as ther-
modynamics. Almost seven generations of students and teachers
have struggled through its subtle, postulated logic since its
formalization by J. Willard Gibbs in the early 1870s.6–8

Thermodynamics has stirred many to write, to philosophize, to
preach, to laughseven to scoff. Yet, in any scientific popularity
poll, it is certain to emerge the uncontested loser!

Taken purely from the left, Gibbs’ methods translate into an
austere formalism of variables and equations—perfect fodder
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for the standard pedagogy through which the subject is often
presented. But the birth of that formalism also had a visual
element. The vehicle that Gibbs used to connect the laws of
thermodynamics with their consequences was a three-dimen-
sional model that represented his ideas and enabled the
operations of thermodynamics to be interpreted through geo-
metric reasoning. Property relationships could be explained
based on the changes that are allowed or forbidden by the laws
of thermodynamics and confirmed by the spatial behavior of
his model. Materials were shown to behave with a logical
regularity that was meted out by thermodynamics and made
intelligible by Gibbs’ geometries.

But Willard Gibbs was no artist, and he described his ideas
only in words. It was the 1870s, and technical illustration as
we know it today hardly existed. The first actual physical model,
which showed the near-mystical energy-entropy-volume func-
tion (USV), was constructed by James Clerk Maxwell, Gibbs’
contemporary and head of the Cavendish Laboratory at Cam-
bridge University.

In his Theory of Heat (1875), Maxwell wrote:9

“Prof J. Willard Gibbs, of Yale College, U.S., to whom we
are indebted for a careful examination of the different methods
of representing thermodynamic relations by plane diagrams,
has introduced an exceedingly Valuable method of studying the
properties of a substance by means of a surface.”

Maxwell’s model represented the properties of the three
phases of water, but it was only qualitative. It showed a surface
with slopes and curvatures that, according to Gibbs, resulted in
regions of stable and unstable thermodynamic behavior con-
sistent with the variance and phase changes that we observe
with a pure material. Maxwell made three copies of his model
and sent one to Gibbs. His personal copy can be seen today in
the Cavendish Laboratory at Cambridge, and the one sent to
Gibbs is preserved by the Physics Department at Yale. Figure
1 shows Gibbs’ copy and also a later and more accurate version
constructed by Clark and Katz.10

The elegant geometrical scenario that Gibbs described for
identifying the levels of thermodynamic stability and the loci
of coexisting phases has been discussed by several authors. For
details and history, we refer to one highly regarded biography11

and also to an article by the first author, “Gibbs and the Art of
Thermodynamics”.12

Gibbs’ reasoning and Maxwell’s construction opened up an
important field of research: the study of phase diagrams.13–17

[To be correct, a phase diagram is any graphic or model showing
relationships among measurable properties (for example, pres-
sure, volume, temperature, or composition). This paper uses the
more general term thermodynamic Visualization for a graphic
representation of any property relationship.] No textbook on
the subject (and there are hundreds) would seem complete
without its mandatory collection of graphs and three-dimensional
(3-D) projections showing the usual array of PVT, SPT, HSP,
T-x and H-x functions for common pure and mixed systems.
The work by Tamás and Pál14 contains a particularly intriguing
set of stereographic drawings for ternary systems—anaglyphs,
primarily temperature-composition diagrams for solid-liquid
equilibria.

However, manual methods alone are hardly adequate to
produce the variety of complex geometrical structures that one
encounters in visualizations of thermodynamic functions. The
key to portraying such models often hinges upon the ability to
show delicate slopes and curvatures, intersections and intercepts,
and orientations favorable to the viewer. For modern computer
graphics, such operations are commonplace. Converting dense
thermodynamic data into a three-dimensional drawing by means
of appropriate projection geometry is both simple and fast using
current technology. Far-more-complicated displays are daily fare
in modern films and on commercial television. Indeed no
scholarly task has waited so long but been so well-suited for
today’s computers than visualization of the Gibbsian thermo-
dynamic models.18

Goals

This paper shows computer-generated images of selected
Gibbs modelss3-D parametric sections of thermodynamic
fundamental and state functions for pure, binary, and ternary
systems in the vicinity of their vapor-liquid critical points. (The
mathematical analysis and the resulting equations used to
produce data for the Gibbs models are provided as Supporting
Information.) The databases were created from integrations of
the Peng-Robinson equation in its pure and mixed forms,19

combined with standard expressions for ideal-gas heat capacity.
The drawings appeared first in the 1993 doctoral dissertation
of the second author20 and also may be seen on the authors’
website: “Gibbs Models” (http://www.public.iastate.edu/∼jolls).

We have three objectives:
(1) To show the role of the Legendre transform in mapping

thermodynamic data among the various coordinate systems
suited to its analysis.

(2) To show the regularity with which thermodynamic
functions appear when their geometries are visualized.

(3) To show the various regions of thermodynamic stabilty
and confirm the agreement between model geometry and
stability criteria.

The Legendre Transform in Thermodynamics

In physics lectures at the University of Göttingen in 1929,
Max Born confirmed that Gibbs had used the Legendre
transform in his organization of thermodynamic information into
the many coordinate systems that we use today.21 Referring to
Gibbs’ third paper, “On the Equilibrium of Heterogeneous
Substances”(see ref 8), we find the familiar equations written
in his original symbols as they apply to a closed, pure system:

ψ) ∈ - tη (the Helmholtz energy)

Figure 1. Early models of Gibbs’ thermodynamic surface.
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�) ε+ pV (the enthalpy)

�) ε- tη+ pV (the Gibbs energy)

where ε is energy and η is entropy. These are abbreviated
expressions for the more-general statements given below.

Legendre transforms for pure systems are familiar and have
been described thoroughly by many authors.22–26 In this paper,
we will recognize the common forms, show their spatial
geometries, and highlight features of thermodynamic interest.
Some of the less-common transforms are shown on the “Gibbs
Models” website.

Using modern symbolism to express the energy-explicit form
of the Fundamental Equation of Thermodynamics for N moles
of a pure system, we write, using fully extensive variables,

U) f(S,V,N) (the base function) (1)

taking first Legendre transforms

A)U - (∂U
∂S )V,N

S (the Helmholtz energy, f(T,V,N))

(2)

H)U - (∂U
∂V )S,N

V (the enthalpy, f(S,P,N)) (3)

taking a second transform,

G)U - (∂U
∂S )V,N

S- (∂U
∂V )S,N

V (the Gibbs energy, f(T,P,N)

(4)

To be thorough, one additional first transform and two
additional second transforms may be taken for the pure-
component case, all involving the variable N. However, for our
purposes, little is gained by doing so, and the most useful forms
remain the familiar ones that have been given previously.
Because eq 1 is a homogeneous, first-order function of its
arguments, the third transform for a pure system is identically
zero.22,23

Gibbs chose to base his development on the energy-explicit
equation that is described by eq 1. At least one author before
Gibbs (Massieu27) proposed the inverse (the entropy-explicit
expression S ) f(U,V,N)), but modern usage follows Gibbs, and
only occasionally do we have a need for the alternate forms.
An important situation where the entropy-explicit equation is
required arises when a model of an isolated system is needed
to fit Rudolph Clausius’ statements of the first and second laws
of thermodynamics28 (for example, when developing criteria
for equilibrium and stability). Callen23 has discussed this topic
in more detail.

The Legendre transform moves thermodynamic information
among coordinate systems whose independent variables are
related as slopes. Although the intensive variables temperature
and pressure appear only as derivatives with the USVN function,
they become coordinate variables for the transformed quantities,
and thus the fundamental forms described by eqs 2, 3, and 4
are better suited to physical situations where those particular
sets of independent variables are subject to control. However,
such ideas for pure systems are well-understood and will not
be pursued further here.

Before showing the pure-fluid models, it may be helpful to
demonstrate graphically the effect of the Legendre transforma-
tion on the spatial geometry of a basic mathematical expression.
To that end, we have chosen one that possesses features that
are qualitatiVely similar to certain fundamental thermodynamic
quantities. Consider as a base form

Z(0) ) k(1- e-Rx1)+mx2
3 (5)

(Here, xi is a general variable, not to be confused with its later
usage as a chemical mole fraction.) The surface generated by
eq 5 is shown in Figure 2a (for m ) 1, R ) k ) 2). The red
region (x2 < 0) is uniformly convex toward the viewer, but the
green region (x2 > 0) has a positive second derivative in the
x2-direction and is, thus, saddle-shaped. While the boundary
between the two is a locus of inflection for this simple case,
analogous features on thermodynamic surfacessthe stability-
limit curves observed with specific transformssdo not coincide
with a coordinate direction and appear skewed. Such curves
are found on the surfaces generated by eqs 2 and 3 for pure
fluids and also on those for certain higher-order binary and
ternary transforms, as will be discussed later. In this paper,
stability limits will always be designated by yellow-red
boundaries.

To exercise the operation, let us take two first Legendre
transforms and one second transform of the function described
by eq 5 and observe the resulting geometries. We will indicate
the procedure (following the notation of Model and Reid22),
give the results, but omit the algebraic detail.

For

Z(k) ) f(x1,x2, ... , xm)

Z(k) ) Z(0) -∑
i)1

k (∂Z(0)

∂xi
)xi

with

(∂Z(0)

∂xi
)

xj,j*i

) �i

Z(k) ) f(�1, ... , �k, xk+1, ... , xm) (6)

Thus, based on eq 5,

Z(1) ) 1
R[Rk- �1 + �1 ln( �1

Rk)] +mx2
3 (7)

Z(1) ) (
2�2

3⁄2

3√3m
+ k(1- e-Rx1) (8)

Z(2) ) 1
R[Rk- �1 + �1 ln( �1

Rk)] ( 2�2
3⁄2

3√3m
(9)

where �1 ) Rke-Rx1 and �2 ) 3mx2
2.

The transformed functions appear in Figures 2b, c, and d,
with the new independent variables �1 and �2. Transforming in
given directions results in new functions (here, Z(1) and Z(2)),
where one or both second derivatives have changed signs and
the data have redistributed. Curves from the drawing in Figure
2a of constant x1 (marked R, �, γ) and of constant x2 (marked
F, σ, τ) are labeled in their new positions on drawings 2b, c, d,
as are the points corresponding to maximum and minimum
values of x1 and x2.

The Legendre transform is not continuous through a point of
inflection, and for the base equation 5, this results in a folding-
back in the �2-direction. The behavior here is the result of the
( term appearing in eqs 8 and 9 and is qualitatively similar to
that observed with certain thermodynamic fundamental func-
tions, for example, for pure systems when transforming from
either the Helmholtz or enthalpy functions (eqs 2 and 3) to the
Gibbs energy (eq 4).

Generalizing, the fold-back feature is observed with any (n
+ 1)th transform of an n-chemical-component, all-extensive
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variable data set, or where all independent extensive variables
except the final one have been replaced by their intensive
conjugates. Such functions also are found in catastrophe theory
and are called swallowtails.29 We will see more examples of
this behavior in the thermodynamic drawings that follow.

The role of eq 9 may now be reversed, so that it becomes
the base function itself for back-Legendre transformation to
recover eq 5 exactly, thus verifying that the procedure can be
inverted and that the original information content has been
retained throughout the process.

Thermodynamic Surfaces for Pure Fluids

We begin with the patriarch of all fundamentals, the all-
extensive USVN function, constructed here for the vapor and
liquid phases of ethylene (see Table 1). To obtain the 3-D
variables for plotting, we scale with the number of moles and
obtain the molar quantities UN, SN, and VN. The surface is shown
in Figure 3; this is the natural home for Gibbs’ signature
expression dε ) t dη - p dV. In all of the drawings shown

here, the color blue denotes states that are absolutely stable and
can be produced in the laboratory. Red regions represent
unstable statessthose whose very existence would violate the
second law of thermodynamics through having no immunity to
perturbation.22,25 [One might argue that the red regions should
not be shown, because states with those properties do not exist
in nature. We show them to illustrate the contrasts in curvature
between the globally stable blue and locally stable yellow
regions, on one hand, and the always-unstable red regions on
the other hand.] Yellow regions comprise the in-between or
metastable states (here, these are superheated liquids or sub-
cooled vapors). [We caution the inquisitive reader that super-
heated liquids can be dangerous. Reid30 has discussed metastable
liquids and referred to them as an “industrial curse”.]

Because all drawings in this collection center around a
vapor-liquid critical point (which is always indicated by a white
cross), the variables that contain arbitrary constants (UN, SN,
AN, µi,...) are referenced to their critical values as well as made
nondimensional. Thus, in Figure 3, (UN - UNC)/(RTC) is the

Figure 2. The function Z(0) ) k(1 - e-Rx1) + mx2
3 and its Legendre transforms; m ) 1.0, R ) k ) 2.0.

Table 1. Material Propertiesa

No. component TC (K) PC (bar) ω a b (× 102 K-1) c (× 105 K-2) d (× 1010 K-3)

1 ethylene 282.4 50.36 0.086 0.4242 1.440 -0.4391 0
2 normal butane 425.16 37.97 0.201 0.9346 3.691 -1.140 0
3 carbon dioxide 304.15 73.76 0.231 1.675 0.7189 -0.4209 8.978

a Constant-volume, ideal-gas heat capacity is given as CV
0/R ) a + bT + cT2 + dT3, where temperature T is given in Kelvin. Interaction parameters

for the mixture form of the Peng-Robinson equation are given as follows: δ12 ) 0.0922, δ13 ) 0.0552, and δ23 ) 0.133.
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dimensionless difference between the molar energy at a general
point and that at the critical point. Temperature and volume
(and pressure, in subsequent figures) appear reduced in the usual
ways. Note that energy is plotted positive-downward in Figure
3 and that the surface is crossed by three white curves of
constant entropy.

The most revealing feature of the USV surface is its change
from being uniformly convex outward (stable and metastable
states) to being saddle-shaped (unstable states). The yellow-
red boundary separates these regions and is, thus, the spinodal
curve; however, in these coordinates, it is not determined by a
single, vanishing, second derivative. For that, in a pure system,
we must wait for the first transform.

Gibbs’ “Rolling Plane”

In its unscaled, extensive form, U ) f(S,V,N) is four-
dimensional and possesses three partial derivatives:

(∂U
∂S )V,N

) T (10)

(∂U
∂V )S,N

)-P (11)

(∂U
∂N )S,V

) µ (12)

While N-scaling for a pure fluid in a closed system seems
natural, it denies us the opportunity to see the last of these
partials in the same way that we see (and understand) the first
two. However, it is a fortunate consequence of the spatial
geometry of these models that the value of the excluded slope
at any point (S, V, N) persists as the intercept on the axis through
the origin of a plane tangent to the 3-D surface at the point (SN,
VN). If a tangent plane were placed anywhere on the blue surface
of Figure 3, with its convex nature, that tangency would be the
sole contact point and we could obtain six numbers from it: the
three spatial coordinates of the tangent point, UN, SN, and VN;
the two principal slopes, temperature T and pressure P (from
eqs 10 and 11); and the value of the intercept of the plane on
the axis through the origin (not shown here), which would be
the chemical potential µ. However, for a pure fluid in a single
phase, this is excess information. Recall that Nµ ) G ) U -
TS + PV, so that knowing the slopes and the N-scaled
coordinates gives µ directly.

However, if the position of tangency is as shown in Figure
3, where the plane straddles the red unstable region with its
saddle surface, two points of tangency result, and, therefore,
there are two remote points on the surface (i.e., with distinct
values of UN,SN,VN) that have the same principal slopes and
that project via a common tangent to the same intercept on the
axis through the origin. Therefore, the thermodynamic states
represented by these two points may coexist in (phase) equi-
librium, because they jointly satisfy the equilibrium criteria.

The dual tangencies in Figure 3 are marked with red and
green crosses that denote, respectively, specific saturated liquid
and vapor states of ethylene. The liquid point is difficult to see
at the scale of the drawing, so the upper-left corner of the surface
is enlarged in Figure 4 to show the details of the blue-yellow-
red boundaries and the contact point of the plane (marked with
a diamond cutout). The idea of rolling relates to the fact that as
the tangent is rolled northeast (NE) from the critical point in
Figure 3: its two contacts define the blue-yellow boundariess
successive pairs of points in vapor-liquid phase equilibriumsand,
therefore, mark the two branches of the coexistence curve for
ethylene in the energy-entropy-volume coordinates.

Gibbs described this clever method for locating phase-
equilibrium states, and Maxwell responded by constructing the
qualitative USV surface, shown in Figure 1. Maxwell’s model
supposedly represented the solid, liquid, and gaseous phases of
water, so Gibbs’ rolling scenario could be considered for all
three common phase transitions: L-V, L-S, S-V. The models
shown in this paper are based on a fluid-phase generating
equation (the Peng-Robinson equation19), so only liquid-vapor
coexistence can be illustrated in these computer drawings.

It is reassuring to note that, as the tangent plane rolls over
the USV surface, its mechanical degrees of freedom match the
variances given by the phase rule: two in the single-phase
regions [the blue and (locally) yellow zones], one along any
pair of coexistence curves (the blue-yellow boundaries), and
zero at the unique, three-point tangency that occurs at the triple
point [realizable with both Maxwell’s surface and also with the
model by Clark and Katz (see Figure 1)]. For more details the
reader is referred to Gibbs’ second paper7 and also to Figure 5.2b
in ref 31.

Figure 3. Energy-entropy-volume function for the fluid phases of
ethylene: (red cross) ) saturated liquid, and (green cross) ) saturated vapor.

Figure 4. Enlargement of Figure 3, to show details of the liquid phase; the
light blue line is a slightly subcritical isobar.
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We will see the rolling plane again in two later examples
involving mixtures.

Transformed Functions

The first-transform surfaces produced by the operations
described in eqs 2 and 3 are shown scaled in Figures 5 and 6,
with the dependent variables again plotted positive-downward.
In both cases, the yellow-red spinodal loci have become
inflection curves, defined by the compact stability-limit expres-
sions

(∂
2AN

∂VN
2)

T

) 0 (13a)

(∂2HN

∂SN
2 )

P

) 0 (13b)

The changes in curvature between the yellow and red regions
are slight but can be seen by looking at the near edge of the
Helmholtz surface and at the far edge of the enthalpy diagram.
The tangent structures drawn are now single brown lines that
represent a specific reduced temperature in Figure 5 and a
specific reduced pressure in Figure 6. Each line straddles the
unstable region and is tangent to a saturated liquid state (red

cross) and a saturated vapor (green cross) on the blue-yellow
boundaries. The Helmholtz tangent is for a reduced temperature
Tr with a value somewhat greater than 0.8 and has a slope equal
to the negative value of the dimensionless vapor pressure at
that temperature: -VcPsat(T)/(RTc).

While the natural Helmholtz energy has sufficient surface
variation at Tr ) 0.8 for these effects to be visible, the natural
enthalpy function does not. If the enthalpy surface were
drawn using the same relative plotting scale as with the
Helmholtz energy, it would appear flat. To make its variation
visible, we must magnify it. This is done in Figure 6 by
plotting the dimensionless difference between the molar
enthalpy calculated at a general point (SN,P) and a reference
enthalpy taken at the same (SN,P) values but from a plane
tangent to the surface at the critical point. The differenced
quantity plotted is called HdN/(RTC), and it magnifies the
vertical variable by a factor of ∼20. Thus, the curvature
change across the yellow-red boundary is visible in Figure
6, and the isobaric tangent line is seen to straddle the unstable
region in the same way as that previously observed and
contact the coexisting L-V states on either side (liquid to
the left, vapor to the right). Although the slope of the
differenced function changes sign in Figure 6, the natural
enthalpy has a uniformly positive slope with entropy, as it
must:

(∂HN

∂SN
)

P
) T > 0 (14)

By analogy with the USV example, the excluded chemical
potential persists also in Figures 5 and 6 as intercepts of the
isothermal (isobaric) tangent lines on the vertical axes at V(S)
) 0. As previously stated, this confirms that all pairs of states
having a common tangent, again satisfy the three criteria for
phase equilibrium in a pure fluid. A more-detailed, two-
dimensional drawing of the Helmholtz scenario may be seen in
refs 31 (p 216) and 32.

Figure 7a shows the final pure-fluid fundamental, the doubly
transformed swallowtail function produced by the operation
described by eq 4, the Gibbs energy. With both independent
variables now intensive and the dependent variable GN identical
to the chemical potential, coexisting phases in these coordinates
are designated by a single curve of points common to both.
Thus, the surfaces for the vapor phase (low pressure) and for
the liquid phase (high pressure) intersect in a single coexistence
curve and continue through it to form the metastable regions:
transparent yellow sheets in Figure 7a that represent superheated
liquid to the left, subcooled vapor to the right. Because the Gibbs
energy is an (n + 1) transform for pure ethylene, fold-back
behavior occurs from both metastable branches to form the
unstable region, which comprises a cap covering the metastable
states and the coexistence curve. We omit it here because it
would block the view, but imply it with several folded-back
red lines. [Fold-back behavior in Figure 7a can be understood
from either Figure 5 or from the detailed Helmholtz drawing
in refs 31 (p 216) and 32. Moving along any isothermal path at
T < Tc, both the slope P and the intercept G (or µ) of the tangent
reverse direction as the volume enters the unstable zone from
either metastable zone surrounding it.] The complete 3-D
swallowtail, containing the unstable region, may be seen in ref
12 (p 320). Several authors have shown typical isothermal traces,
G ) f(P)T.23,25,33

A vertical line drawn in Figure 7a at values of Tr and Pr not
far from the coexistence curve would pierce all three branches
of the Gibbs energy surface (blue, yellow, red). This observation

Figure 5. The Helmholtz energy.

Figure 6. The enthalpy (differenced).
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visually confirms the well-known fact that G is at a minimum
for the most-stable state among any group of states constrained
at (T,P,N).

The drawing depicted in Figure 7b, from the work of Lupis,34

is a sketch of the Gibbs energy for the combination of the solid,
liquid, and vapor phases. It shows the invariant triple point t
and (conceptually) the overlapping metastable zones. The line
marked G� ) Gγ is the V-L coexistence curve and corresponds
to the intersection of the blue vapor and liquid regions in Figure
7a.

We have shown three types of surface geometry that enable
coexisting, phase-equilibrium states to be visualized by observ-
ing, respectively, a tangent plane, a tangent line, and points along
the self-intersection of surface segments. These geometries
persist as we increase the order of the system from pure to binary
to ternary, etc., and the transform level yielding a given
geometry advances with each additional chemical component.
Thus, first-transform surfaces in a binary system may be treated
with Gibbs’ rolling plane, and fourth-transform surfaces for a
ternary show self-intersecting, swallowtail behavior. We shall
see these cases in the sections on mixtures.

Equations of State: Derivative Functions

We follow the language of Callen23 and Model and Reid22

by referring to any first derivative of any fundamental form as
an equation of state (EOS). As noted earlier, for the special

cases where all EOS variables are measurable, one uses the
more-restrictive term, phase diagram.

Two EOS examples are shown for pure fluids: the familiar
workhorse PVNT function, obtained formally by differentiation
of the Helmholtz energy, with respect to volume, and the TSNP
function, which is obtained from the enthalpy via differentiation
with respect to entropy. For this collection, Figure 8 is simply
a plot of the cubic Peng-Robinson equation with the metastable
and unstable regions exposed. What were points of inflection
for the Helmholtz function are now extrema on the PVNT phase
diagram. The two subcritical isotherms in Figure 8 show the
minimum/maximum behavior that is typical of any cubic curve,
and the colored crosses now indicate the spinodal points.

The TSNP function drawn in Figure 9 is the three-dimensional
counterpart of the familiar T-S diagram, which is another
workhorse of engineering thermodynamics, particularly for the
design of power cycles. Figures 9 and 6 are related in the same
way as Figures 8 and 6 are related.

The TSNP surface for water and steam, showing the ruled
two-phase region instead of the metastable and unstable zones,
was an early product of the computer graphics research in this
laboratory. It appeared colorized on the dust jacket of the
thermodynamics textbook by Smith, Van Ness, and Abbott (fifth
edition)35 and was shown even earlier by Sears as a line drawing
(see ref 15, p 158).

Figure 7. (a) Gibbs energy (fluid phases only), and (b) Gibbs energy for
the three common phases (t ) triple point). (Figure 7b reprinted with
permission from ref 34. Copyright C. H. P. Lupis.)

Figure 8. PVT function from the Peng-Robinson equation.19

Figure 9. Temperature-entropy-pressure diagram.
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Equation-of-state functions derived from cubic-equation-based
property predictions form cusp catastrophes.36

Diagrams for Mixtures

In his famous monograph, Molecular Thermodynamics of
Fluid-Phase Equilibria,37 John Prausnitz wrote that “We live
in a world of mixtures...”. While no rigorous development of
the macroscopic thermodynamics of equilibrium (MTE)38 could
proceed without the introduction provided by the pure-fluid
basics, engineers must move through that and go on to the more
chemically interesting, industrially important, and, for this paper,
dimensionally complex examples involving two or more com-
ponents. Here, we will consider one binary and one ternary
combination. While the explanations of the drawings will be
more complicated, we will be relieved to find that the regularity
of the Gibbs models helps organize our thinking and once again
affirms the universality of thermodynamic analysis.

We consider two types of independent-variable sets: sym-
metric and asymmetric.

1. Symmetric.

extensive notation: U) f(S,V,N1,N2,...,Nn)

conjugate intensive variables: T,P,µ1,µ2,...,µn

with

µi ) (∂U
∂Ni

)
S,V,Nj,j*i

Dividing by Nn scales the variables, to yield mole-number-based
quantities (S/Nn, H/Nn,...) and mole-ratio compositions (0 e Ni/
Nn < ∞

Legendre transforms taken with respect to symmetric mole
numbers are indicated by one or more prime symbols and yield
conventional chemical potentials. For example, for the third
transform in a binary system, conventional ordering:

base function: U) f(S,V,N1,N2)

third transform, unscaled: G′ )U-TS+PV-µ1N1 )
f(T,P,µ1, N2) (5-dimensional)

scaled:
G'
N2

) f(T,P,µ1) (4-dimensional)

at a fixed temperature: (G'
N2

)
T
) f(P,µ1)T (3-dimensional)

2. Asymmetric.

extensive notation: U) f(S, V, N1, N2, ... , Nn-1, N)

N)∑
1

n

Ni

conjugate intensives: T,P,η1,η2,...,ηn-1,ηn

η is a modified chemical potential: ηi ) (∂U
∂Ni

)
S,V,Nj,j*i,n,N

)

µi - µn (ηn ) µn)

Equality of ηi between phases guarantees equality of µi, thus
assuring chemical equilibrium. [Conventional chemical poten-
tials µi remain finite as xi ) Ni/Nf 1.0 but become negatively
infinite as xi f 0. The modified chemical potentials ηi are
unbounded at both concentration extremes.]

Dividing by N scales the asymmetric variable set, to yield
molar quantities (SN, HN,...) and mole-fraction compositions (0
e Ni/N ) xi e 1.0).

Legendre transforms taken with respect to asymmetric mole
numbers are indicated by one or more plus signs and yield
modified chemical potentials. For example, for the third
transform in a ternary system, conventional ordering:

base function: U) f(S,V,N1,N2, N)

third transform, unscaled: G+)U-TS+PV-η1N1 )
f(T,P,η1,N2, N) (6-dimensional)

scaled:
G+

N
) f(T,P,η1,x2) (5-dimensional)

at fixed temperature and pressure: (G+

N )
T,P

) f(η1,x2)T,P

(3-dimensional)

Drawings for Binary Systems

The model system is ethylene (1)-normal butane (2) (again,
see Table 1, “Material Properties”). We begin with a first
Legendre transform, conventional ordering, asymmetric variable
set, and show the surface in Figure 10. This is the Helmholtz
energy for the binary, restricted to a single temperature (347
K) such that the composition of the critical point is xC(ethylene)

) 0.67 and the critical pressure is 67.9 bar. Following the
symbolism already given, the function in dimensional terms is

AN ) f(VN,x1)T

After being referenced to the critical point and nondimen-
sionalized as in the earlier figures, it becomes

AN-ANC

RTC
) f( VN

VNC
, x1)

T

The function is plotted positive-downward, to make the blue-
yellow regions convex toward the viewer and place the tangent
plane on the viewer’s side of the surface. The geometry of this
binary first transform is the same as that of the base function
(USV) for pure fluids, and it is drawn in Figure 10 with a
transparent tangent. The plane straddles the red unstable region
and has rolled NE from the critical point, its two contacts tracing
the blue-yellow boundaries and its slope in the volume direction
-P decreasing steadily. The plane is resting at a saturated liquid
point, 16% C2H4 (red cross), and at a saturated vapor point,
59% C2H4 (green cross), which constitute jointly an equilibrium

Figure 10. Helmholtz energy for the ethylene (1)-normal butane (2) system
at 347 K.
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pair according to the following:
(I) The points are part of an isothermal surface and, therefore,

are at the same temperature (347 K).
(II) Both points are contacted by the same tangent plane and

are thus at the same pressure P (negative slope in the volume
direction, here 25.8 bar) and have the same modified ethylene
chemical potential η1 (slope in the x1 direction). [ηi ) (∂A/
∂Ni)T,V,Nj,j; scaling with N gives ηi ) (∂AN/∂xi)T,VN,xj; for a binary
system, η1) (∂AN/∂xi).]

(III) They both project (via the plane) to the same intercept
on the vertical axis through the origin (x1 ) 0, VN ) 0) and
therefore have the same butane chemical potential η2. [Numer-
ical values are not given for η1 or η2, because they have no
physical meaning. Chemical potential contains arbitrary con-
stants.]

As with USV for a pure material, the change from metastable
to unstable corresponds to a change in surface character from
locally convex (yellow) to saddle (red). But again, in these
coordinates, that transition cannot be represented by a single,
vanishing, second derivative.

We show two binary second transforms. The first is the
familiar isothermal Gibbs energy, differenced and plotted
positive-downward in Figure 11 against reduced pressure and
ethylene mole fraction, for the temperature (375 K) that yields
the equimolar critical point.

extensive (asymmetric) form: G) f(T,P,N1,N)

differenced and scaled: (GdN)T)f(P,x1)T

One supercritical and two subcritical isobars cross the surface
in Figure 11. The lowest of the three (at a reduced pressure of
Pr ≈ 0.75) is accompanied by a tangent line denoting saturated,
equilibrium states on the opposing blue-yellow boundaries. The
four phase-equilibrium criteria are satisfied in a manner
analogous to those for the previous case.

The second example is the primed (or modified) Helmholtz
energy, written here in extensive, symmetric variablessa five-
dimensional form:

A′ )U-TS-µ1N1 ) µ2N2-PV) f(T,µ1,N2,V) (15)

[There are no common names for transforms taken with respect
to mole numbers.] When the temperature is fixed as observed
previously (375 K), and the function is differenced and volume-
scaled, one obtains the three-dimensional version that is plotted

in Figure 12:

(A′dV)T ) f(µ1,N2V) (16)

The chemical potential is referenced to its critical value in
the same way as the previous dependent variables. N2V (or N2/
V) is the molar density of component 2 (normal butane), and
the critical point is the same physical state as in the previous
drawing.

Volume-scaling excludes the pressure from direct display in
3-D sections of higher-dimensional thermodynamic functions.
However, by analogy with the earlier examples of N-scaling,
the pressure at any point may still be observed from the intercept
of the appropriate line or plane tangent to the surface at that
point. The brown tangent line of fixed µ1 in Figure 12 has been
extended (dashed) to its intersection with the dashed vertical
axis at N2V ) 0. This gives the dimensionless, differenced
pressure (-Pd/Pc) that corresponds to the equilibrium liquid and
vapor states shown by the red and green crosses.

As noted previously, each of the special coordinate systems
of MTE conforms to a physicochemical system constrained in
a particular way. Figure 13 shows an experimental arrangement
that corresponds to the A′ function just defined. [Figure 13 was
created by William Beach, graphic designer in the College of
Engineering at Iowa State University. It acknowledges and
applauds the collection of wryly humorous illustrations in the
textbook by Model and Reid22 (now Model and Tester31). Those
drawings were created by MIT chemical engineering graduate
student Tetsuo Maejima, with important contributions from the
late Professor Robert C. Reid.] The source of species 1 holds
µ1 constant through a semipermeable membrane while species
2 is being added to the cell. Such an apparatus might be used
with single phases for determining the dependence of pressure
on composition or the dependence of chemical potential on
volume.

( ∂P
∂N2

)
T,µ1,V

)-( ∂
2A′

∂V ∂ N2
))-(∂µ2

∂V )
T,µ1,N2

It might be used also to demonstrate the phase-change
behavior shown in Figure 12 along the blue-yellow boundaries.

Recall that experiments in thermodynamics are performed
with fully extensive, not scaled, quantities. The reduction to
molar variables and to mole-fraction compositions is most often

Figure 11. Binary Gibbs energy (differenced) at 375 K. Figure 12. Visualization of eq 16, the modified Helmholtz energy A′
(volume-scaled and differenced), a second Legendre transform.
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done for convenience and to allow for the compact display of
data. Thus, these results could be plotted also as

AdV
+

Pc
) f(η1, NV)T

where NV is the total molar density.
For both of the previous second transforms, the yellow-red

stability limits (spinodals) are curves of inflection, which can
indeed be represented by single, vanishing, second derivatives:

(∂2GN

∂x1
2 )

T,P

) 0 ( ∂
2A′V

∂(N2V)2)
T,µ1

) 0 (17)

A Binary Equation of State

We show a single EOS for ethylene-normal butane derived
from the Gibbs energy function displayed in Figure 11. Using
extensive variables:

( ∂G
∂N1

)
T,P,N

) η1 ) f(T, P, N1, N)

Scaling by N and fixing the temperature at 375 K yields η1

) f(P,x1)T. Figure 14 shows the EOS function, referenced to its
critical value and made nondimensional.

η1 - η1C

RTC
) f( P

Pc
, x1)

T

The inflection curves of the Gibbs energy again produce
minima and maxima on this surface, as highlighted by the
crosses on the center white isobar. Over most of the red region
(0.65 < Pr < 1.0), the slope in the composition direction is
negative:

(∂η1

∂x1
)

T,P
< 0

This violates the first diffusional stability criterion, and no real
state of the mixture can exhibit such behavior.

Multicomponent systems possess a hierarchy of stability
limits, with each additional component adding a more restrictive
condition and causing the true limit to be reached sooner than
would be expected from the lesser restrictions.22,25 For the pure
systems previously discussed, two criteria were in effect for
stable and metastable states:

(1) For thermal stability (conventional ordering):

(∂2U

∂S2 )
V,N

) T
NCV

> 0 (18)

(2) For mechanical stability (implied earlier by eq 13a):

(∂
2A

∂V2)
T,N

)-(∂P
∂V)T,N

> 0 (19)

The latter condition was controlling for the pure cases and
thus dictated the properties along the yellow-red boundaries
in Figures 3–9. The presence of a second component now
imposes a third, yet-more-restrictive condition on binary
mixtures. This is called the first-diffusional criterion, and, with
conventional ordering of asymmetric variables, it becomes

( ∂
2G

∂N1
2)

T,P,N

) (∂η1

∂x1
)

T,P
> 0 (20)

For Pr < 0.65, an orange region within the red zone develops
in Figure 14, where the surface first becomes vertical and then
tilts back at still lower pressures to show a positive slope over
a small composition range. This is barely visible on the lowest
white isobar (Pr ≈ 0.6) but is more pronounced along the near
edge of the orange region itself. This behavior is an artifact of
how the various stability limits (thermal, mechanical, first-
diffusional,...) relate to each other. The latter two are linked as
follows:22

( ∂
2G

∂N1
2)

T,P,N

)
| (

∂
2A

∂V2)
T,N

( ∂
2A

∂V ∂ N1
)

( ∂
2A

∂V ∂ N1
) ( ∂

2A

∂N1
2)

T,V,N |
(∂

2A

∂V2)
T,N

)

( ∂
2A

∂N1
2)

T,V,N

-
( ∂

2A
∂V ∂ N1

)2

(∂
2A

∂V2)
T,N

(21)

Figure 14. Binary equation-of-state (EOS) function, η1 ) f(P, x1)T.

Figure 13. Experimental cell for studying eq 16. (Illustration provided by
William Beach, Iowa State University, 2008.)
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The left side of eq 21 (the first diffusional criterion, term a)
relates directly to the surfaces in Figures 11 and 14, but the
terms on the right are more readily associated with Figure 10,
which is the binary Helmholtz function. Two of the three
derivatives on the right are directly visible from slope variations
in Figure 10, and the mechanical stability criterion (eq 19; here,
term b) appears in the denominator. At any (locally) stable (blue-
yellow) state in Figure 14, terms a and b must both be positive.
Moving from that point toward the yellow-red spinodal causes
term a (and, thus, also the right side of eq 21) to reach zero
before term b and the isobar to show a zero slope accordingly.
Crossing into the unstable region at Pr > 0.65 results in a
negative slope, but continued movement toward the opposite
spinodal reverses that change, and the slope returns to zero and
then to a positive value again in the opposite metastable zone.
For Pr > 0.65, term b remains positive and has no influence on
the sign of the slope.

For Pr < 0.65, within the red zone, term b also becomes
negative and the isobar develops a positive slope, which then
defines the orange region. Term b is the mechanical stability
criterion and was controlling in the pure-fluid cases. Here, it
has the same mathematical role but is being used with a mixture
whose composition changes along any isobar.

That complication is avoided if a constant-composition path
is followed into and out of the unstable region, as begun by the
dashed white line in Figure 14. Now the terms in eq 21 are
applied to a fluid of fixed temperature and composition, where
only pressure and volume change along the path. Again, the
diffusional limit is violated first, and, for the same reasons, but
one might now say that the subsequent inner violation (entering
the orange zone) corresponds to crossing the mechanical limit
of a pseudo-pure fluid with PVT properties identical to those
of the fixed-composition, single-phase binary. Such an example,
for a mixture of ethane and normal butane, is worked numeri-
cally in chapter 9 of ref 22

Drawings for Ternary Systems

For a ternary mixture, we add carbon dioxide (3) to the
ethylene (1)-normal butane (2) binary previously modeled. We
show three fundamental forms: the second, third, and fourth
Legendre transforms. The geometries of these surfaces coincide
with the three fundamental geometries already noted, where a
tangent plane, a tangent line, or self-intersection defines
coexisting phases in regions of metastable and unstable
liquid-vapor states.

The critical locus of this ternary yields an equimolar critical
point at 350 K and 7.53 MPa. With three components,we must
now fix two quantities to have surfaces that can be plotted in
three dimensions.

The first example is the Gibbs energy-composition diagram
for the system. Asymmetric variables and N-scaling give

G
N
) f(T, P, x1, x2)

Differencing, fixing the temperature and pressure as noted
previously, and nondimensionalizing yields the function that is
depicted in Figure 15.

GdN

RTC
) f(x1, x2)T,P

As the order of the mixture increases, it becomes increas-
ingly difficult to place the variable ranges considered in these
drawings in context with the global property diagrams of the
systems that they represent. Therefore, it may be helpful to

view the small composition rectangle shown in Figure 15
relative to the complete right prism that one would use for
full display of the ternary Gibbs energy function. This is
attempted in Figure 16.

As a second transform for a ternary mixture, the GdN

geometry is analogous to that of the Helmholtz energy in
Figure 10 and the USV base function in Figure 3. With GdN

drawn positive-downward, the tangent plane is on the
viewer’s side of the surface, and it has rolled from the critical
point (white cross) toward the viewer, tracing the blue-yellow
boundaries (the coexistence curves) and stopping at the red/
green states that have the compositions shown in Table 2.

In addition to being at the same temperature and pressure,
these states are guaranteed to be in equilibrium, because they
are both fit tangent to a single plane which, if extended, would

Figure 15. Gibbs energy for the ternary system involving ethylene (1),
normal butane (2), and carbon dioxide (3). Conditions: T ) 350 K, P )
7.53 MPa.

Figure 16. Placement of the GdN plot (shown in Figure 15) in ternary phase
space. (Inset adapted from Prigogine and Defay.39)
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yield intercepts on the pure-component axes of the prism (see
Figure 16), giving both states common values of

Gi ) (∂G
∂Ni

)
T,P,Nj,j*l

) µi

for each component. Gj i is the partial molar Gibbs energy.
The blue and yellow regions of Figure 15 are convex, and

the red region is again saddle-shaped. However, even with
differencing, the contour changes are so slight that they are
barely visible, even along the near edge of the drawing, where
x1 ) xeth ) 0.25. If the GdN function were continued toward x1

) 0, the changes would become more pronounced and the
various regions of the surface would intersect the CO2-nC4H10

face of the prism in a typical, isothermal-isobaric, binary G-x
curve, with coexisting L-V states at x2,liq ≈ 0.43 and x2,vap ≈
0.26. The inset in Figure 16, adapted from Prigogine and
Defay,39 shows exactly that scenario, with points A and B
designating the binary V-L states and points D and E designat-
ing the ternary states, analogous to the green and red crosses
on the main drawing. Gibbs energy is plotted positive-upward
in the inset, which explains the opposite convexity. [A drawing
analogous to the Prigogine sketch in Figure 16, but following
the metastable-unstable regions for a binary mixture moving
toward one of its pure components, appears in Dr. Coy’s
dissertation.20 His Figure IV.38 traces the spinodal and coexist-
ence curves through (GPx) space, from the 375 K critical point
of Figure 11 (this paper), over the undifferenced, isothermal
Gibbs energy surface, and ending at the edge of the function
(x1 ) 0), where they terminate in the GN ) f(P)T curve for
normal butane.]

Carbon dioxide and ethylene form a minimum-boiling azeo-
trope, but at conditions far removed from those considered here
for the mixture with normal butane in the critical region. There
is no influence of that behavior on the equilibria shown in Figure
15, and it is interesting to note that the presence of normal butane
in natural gas actually makes it useful as a separating agent for
the azeotropic binary.40

Figure 17 shows a third transform for the ternary in
asymmetric variables, with temperature and the modified
chemical potential of normal butane (η2) fixed, again to yield
the equimolar critical point. Differencing and molar scaling give

A++dN ) f(η1, VN)T,η2

By analogy with Figure 12, the value of η3 () µ3 (or µCO2))
common to any equilibrium liquid and vapor pair is obtained
from the intercept of the common tangent line at VN ) 0, and
the pressure is related (through the differencing) to its slope.
Because η is a contrived measure of chemical potential, its value
cannot be held constant using a single control device. To fix η2

as indicated, one must fix the difference between µ2 and µ3,
using appropriate chemical sources analogous to those sketched
in Figure 13. Therefore, with the temperature also fixed, the
phase rule allows two additional free independent variables to
specify the state of the ternary in a single phase. Pressure and
total molar volume comprise one pair of choices, which would
then set the value of η1 and, thus, µ1. Another pair would be

the pressure and the amount of ethylene N1 in the fixed volume,
which would then determine the total molar volume and all
dependent quantities.

As with any ternary third transform, the spinodal loci in
Figure 17 are inflection curves that are designated by

(∂2A++

∂V2 )
T,η1,η2,N

)-(∂P
∂V)T,η1,η2,N

) 0

Although these compact expressions are correct formally, they
contain the nonmeasurable quantities A++ and ηi. To determine
the physical conditions along the stability-limit curves, we must
re-express the derivatives in terms of measurable variables only.
This is done most often by stepping them down to the
A(T,V,x1,x2,N) variable setsthe asymmetric ternary Helmholtz
functionswhich is compatible with pressure-explicit mixture
equations such as the Peng-Robinson equation. For those cases
where experimental data are available (and indexed on tem-
perature, pressure, and composition), the G(T,P,x1,x2,N) set
corresponding to Figure 15 would be the proper choice. The
analogous step-down operation for a binary mixture is shown
by eq 21. This procedure is demonstrated in refs 22 and 25.

For a final example, we move to Figure 18 and a fourth (n +
1)th transform, with symmetric variables, volume scaling,

Table 2. Ternary VLE Compositions (at T ) 350 K, P ) 7.53 MPa)

Composition (mole fraction)
No. component liquid (red) vapor (green)

1 ethylene 0.27 0.30
2 normal butane 0.37 0.30
3 carbon dioxide 0.36 0.40

Figure 17. The ternary A++ function.

Figure 18. The fourth transform, swallowtail, A′′′ surface, from eq 22.
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differencing, and with temperature with one chemical potential
held constant at values that, again, give the equimolar critical
point.

A′′′ dV ) f(µ2, µ3)T,µ1
(22)

The swallowtail appears as expected, and, again, the unstable
cap is omitted for visibility but implied by three folded-back
red lines. The overlaid red and green crosses appear as in the
dissertation20 to indicate that the blue (stable) regions represent
vapor to the left and liquid to the right. As previously stated,
the metastable sections (transparent yellow sheets) are extensions
of the stable regions beyond their intersection along the
coexistence curve.

One can show that the dependent variable here is the reduced,
differenced, negative of the pressure. Thus, the coexistence curve
in Figure 18 may be considered to give the monovariant
saturation pressure for the ternary when both phases are present,
the temperature and µC2H4 are fixed, and either µn-C4H10 or µCO2

is taken to be the independent variable. The nature of these five
quantities assures phase equilibrium at all points along the curve
of self-intersection.

For a ternary EOS, the reader is referred to the Gibbs website,
where two forms are shown (Index of drawings, Ternary
Equations of State): Referring to the Web figure captions, one
is the derivative of the asymmetric third transform G+ [with
the heading (η2x2η1)T, P]. In Figure 19, we show a classic sketch,
again adapted from Prigogine and Defay,39 in which curves of
constant µ1 are plotted against the mole ratio N2/N3 to give the
behavior of µ2. The subcritical curve d shows the familiar
minimum/maximum characteristics. If Figure 19 had been drawn
in terms of mole-fraction compositions and modified chemical
potentials, it would be a precise match to the derivative of the
G+ form shown on the website.

In Conclusion

We have presented computer-drawn images of a sampling
of the many Legendre-transformed functions from which the
working expressions of the macroscopic thermodynamics of
equilibrium (MTE) are derived. We have used a variety of
graphics tools to make the drawings visually convincing, and
we have given explanations that we hope will help the viewer
connect those geometries with the constrained systems that they
represent. But we are not the first thermodynamicists with
questioning eyes to ponder the structures and inter-relationships
thatexistamongtheseinterestingphysical-chemical-mathematical
forms. Over the decades, they have gained the attention of a
small but important segment of the thermodynamics cognoscenti.

We recall the beautiful work of Heike Kamerlingh Onnes, a
physicist at the University of Leiden and a 1913 Nobel Laureate
for his work to liquefy helium.41,42 Kamerlingh Onnes also was
interested in the thermodynamics of fluids, and he understood
the power of visual thinking very well. With his colleagues and
students, he coauthored a group of papers in the early 1900s
where not only were the properties of pure fluids and mixtures
examined, but the results of the studies cast into elegant, three-
dimensional, Gibbs-Maxwell-like models.43 In her overview
of the Dutch School of thermodynamics,44,45 Anneke Sengers
noted that most of the Kamerlingh Onnes models have been
preserved at the Boerhaave Museum at Leiden.

We are reminded also of Hiroshi Sugimoto’s dramatic
photographs of stereometric models made of plaster and used
in turn-of-the century Germany to help scholars grasp complex
mathematical formulas.46 We show one in Figure 20. In
Sugimoto’s words, “Art is possible even without artistic
intention”.

But the skeptic may still ask:
“Why drawings?”
“Aren’t words and numbers enough?”
“Why mix exact science with subjective art?”
“Why not just calculate these quantities and be done with

it?”
“What good are qualitative sketches and geometric procedures

when a scientist or engineer may ultimately need results accurate
to within a few tenths of a percent?”

“Isn’t that what computers and precision instruments are for?”
We counter by claiming that many who have tackled this

onerous subject over the 135 years since J. Willard Gibbs gave
it formal life have tried to do so exactly that way: by the
numbers. The organization, the transformations, and the inter-
connections discussed in this paper have frequently not been
emphasized. Too often, conventional pedagogy has encouraged
rote memorization of ill-connected facts, with the results being
forced definitions and circular arguments. No professional
thermodynamicist should be surprised to hear the subject spoken
of among the rank and file as abstract and incomprehensible.

Our visual models offer a tangible middle groundsa halfway
house between barren mathematical formulas and the painfully
slow and scrupulously demanding experiments that can support

Figure 19. Isothermal, isobaric, constant-µ1 curves for a ternary mixture
(1-2-3) near a critical point c. Adapted from Prigogine and Defay.39

Figure 20. Mathematical sculpture photographed by Sugimoto.46 [From
The New York Times, December 2, 2004. Copyright 2004, The New York
Times (www.nytimes.com). All rights reserved. Used by permission and
protected by the Copyright Laws of the United States. The printing, copying,
redistribution, or retransmission of the Material without express written
permission is prohibited.]
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most of the claims of classical thermodynamics. When faced
with exactly that range of choices, the cautious engineer most
often opts for the center position, and that is what we hope our
readers will choose.

We began this paper by recalling J. C. Maxwell’s first words
about the merits of Gibbs’ “exceedingly valuable method of
studying the properties of a substance by means of a surface”.
We end by noting the special significance of those words
following the release of four first-class U.S. postage stamps to
commemorate Gibbs and three other American scientists.47 The
Gibbs stamp is shown in Figure 21, and on it we see the map
of the famous Maxwell model, an early and powerful example
of science visualized through art.48 The time is upon us to use
that art and our magnificent modern graphics tools to show
scientific ideas visually and to have pictures become the equal
of numbers in dialogue among educated people.

A Word About the Graphics

The computer drawings in this paper were made in the early
1990s using the type of hardware and software commonly
available to academic engineering departments at the time. The
programs that generated the property data and that organized
those data into the combinations of arrays needed for graphics
rendering were unique in their ability to handle the special
geometries of thermodynamic fundamental and state functions.20

Partitioning the surfaces into stability-based, colored zones, with
precise boundaries, was a tedious computing operation in itself.

The rendering was done by the then-popular solid-modeling
package, MOVIE BYU, which is a software product that was
developed by Professor Henry Christiansen in the Department
of Civil Engineering at Brigham Young University.49 We
gratefully acknowledge the help of Dr. Christiansen and his co-
workers.

Computer graphics has progressed very far in the 15 years
since these images were constructed. Memories are larger,
computing speeds are faster, and newer utilities such as surface
clipping and ease of animation might now reduce the work
required to create them, as well as improve the ways in which
they are viewed. However, the personal effort needed to move
from basic thermodynamic data sources to finished geometry
files of transformed variables would be about as great today as
it was when the research was done. Computer visualization,

when well-conceived, should delight its viewers but also insulate
them from the intense labor needed to produce it.
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